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Abstract
Fully automated machine learning methods based on structural magnetic resonance imaging
(MRI) data can assist radiologists in the diagnosis of Alzheimer’s disease (AD). These algorithms
require large data sets to learn the separation of subjects with and without AD. Training and test
data may come from heterogeneous hardware settings, which can potentially affect the
performance of disease classification.

A total of 518 MRI sessions from 226 healthy controls and 191 individuals with probable AD
from the multicenter Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used to
investigate whether grouping data by acquisition hardware (i.e. vendor, field strength, coil system)
is beneficial for the performance of a support vector machine (SVM) classifier, compared to the
case where data from different hardware is mixed. We compared the change of the SVM decision
value resulting from (a) changes in hardware against the effect of disease and (b) changes resulting
simply from rescanning the same subject on the same machine.

Maximum accuracy of 87% was obtained with a training set of all 417 subjects. Classifiers trained
with 95 subjects in each diagnostic group and acquired with heterogeneous scanner settings had an
empirical detection accuracy of 84.2±2.4% when tested on an independent set of the same size.
These results mirror the accuracy reported in recent studies. Encouragingly, classifiers trained on
images acquired with homogenous and heterogeneous hardware settings had equivalent cross-
validation performances. Two scans of the same subject acquired on the same machine had very
similar decision values and were generally classified into the same group. Higher variation was
introduced when two acquisitions of the same subject were performed on two scanners with
different field strengths. The variation was unbiased and similar for both diagnostic groups. The
findings of the study encourage the pooling of data from different sites to increase the number of
training samples and thereby improving performance of disease classifiers. Although small, a
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change in hardware could lead to a change of the decision value and thus diagnostic grouping. The
findings of this study provide estimators for diagnostic accuracy of an automated disease diagnosis
method involving scans acquired with different sets of hardware. Furthermore, we show that the
level of confidence in the performance estimation significantly depends on the size of the training
sample, and hence should be taken into account in a clinical setting.

Keywords
Magnetic resonance imaging; MRI; Support vector machines (SVM); Alzheimer’s disease; Multi-
site study

Introduction
Fully automated methods detecting presence or absence of Alzheimer’s disease (AD) based
on structural magnetic resonance imaging (MRI) data can help radiologists (Klöppel et al.,
2008; Magnin et al., 2009; Plant et al., 2010; Vemuri et al., 2008). AD is associated with
formation of extracellular amyloid immunoreactive senile plaques and tau immunoreactive
neurofibrillary tangles (Braak and Braak, 1991). It is also associated with progressive
atrophic changes that can be detected by structural MRI. Subjects with AD typically show
patterns of gray matter (GM) atrophy involving the medial temporal lobe, particularly the
hippocampus and entorhinal cortex, among other brain regions, with simultaneous
expansion of the ventricles (Baron et al., 2001; Fox et al., 1996; Jack et al., 1992; Whitwell
et al., 2007). Due to the characteristic atrophy pattern, the GM is an informative biomarker
to detect AD with structural MRI (Klöppel et al., 2008; Magnin et al., 2009; Vemuri et al.,
2008).

An increasing number of multi-center studies aim to combine data from different scanners to
increase statistical power and fields of applications. Studies suggest that data from different
sites can be pooled, but at the same time that systematic inter-scanner differences can occur.
Stonnington et al. (2008) compared the variation of data acquired on six distinct scanners of
same vendor/type on a voxel-by-voxel level with a mass univariate test on GM probability
maps and concluded that the effect of AD is significantly larger than the inter-scanner
effects. On the other hand, several studies indicate that the effects of inter-scanner variability
are far greater than intra-scanner variability (Huppertz et al., 2010; Moorhead et al., 2009).
Similarly, bias field correction and variation in image quality such as signal to noise ratio
(SNR) have an impact on the segmentation (Acosta-Cabronero et al., 2008; Klauschen et al.,
2009; Shuter et al., 2008). Previous classification methods detecting presence of AD from
structural MRI data indicate that performance improved when a high number of samples
were used for training (Franke et al., 2010; Klöppel et al., 2009). This may entail the need to
pool data from different manufacturers and hardware settings.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005) is a large,
multi-center, multi-vendor study that acquires structural MRI of cognitively normal healthy
controls (CN), mild cognitive impaired (MCI) and AD-probable (AD-p) elders. The ADNI
protocols on each scanner type are adjusted such that all sites report comparable results at all
times (Jack et al., 2008). Intensive quality control and the use of a phantom, assure low
inter-scanner variation and high stability of the image quality (Gunter et al., 2009).

In this study we used data from 56 different sites that participated in the ADNI study to
assess the change in detection performance of an AD classifier trained with images acquired
either with homogenous or heterogeneous hardware. As in previous work (Klöppel et al.,
2008), we used a fully automated processing pipeline and a support vector machine (SVM)
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classifier (Vapnik, 1998). The process that computes spatially normalized GM probability
maps in a common template space from structural T1MRI images was found to outperform
other approaches in a recent comparison using multi-site data from ADNI (Cuingnet et al.,
2011). We set out to investigate the impact of heterogeneity of the acquisition hardware on
the classifier outcome. First, as coarse measure of the performance, we computed the
accuracy of classifiers trained on homogenous hardware (pure set). Then we computed the
ranges of accuracies that can be expected from classifiers trained on randomly selected
images from heterogeneous hardware (mixed sets) with the same sample sizes as the pure
sets. These distributions were then compared to the previously observed accuracies of each
pure set. Second, in order to quantify hardware-related effects we introduced the analysis of
the SVM decision value. Positive values indicated AD-p and negative values indicated CN.
Ideally, the decision value should depend only on the subject, not on the hardware. The
further away from zero, the higher is the confidence of the classifier in its decision. With the
intention to determine the minimal uncertainty of this value due to acquisition noise and pre-
processing, we quantified the variation of the decision value between back-to-back scans of
subjects. Then we quantified the variation of the decision value between scans of same
subjects on both field strengths.

Materials
Participants and image acquisition

Our data included T1-weighted MR images from 417 individuals of which 226 were
cognitively normal healthy controls (Mini-mental state examination (MMSE): 29.1±1.0,
age: 76.1±5.0) and 191 had probable AD (MMSE: 23.3±2.1, age: 75.5±7.5). All images
were obtained from ADNI. Inclusion criteria for participants were according to the protocol
described in http://www.adni-info.org/scientists/AboutAdni.aspx#. Individuals assigned to
the AD-p group met NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984).
We first selected all ADNI CN and AD-p subjects with a baseline MRI scan (all were
scanned on 1.5 T, a subset also on 3 T). We excluded 2 AD subjects that progressed to some
other dementia during follow-up. The median follow-up time for all patients was 24 months.
The interquartile ranges (IQR) by field strength are listed here: 1.5 T–IQR: 24–36 months
and 3 T–IQR: 24–31 months. Three subjects were further excluded because the required
baseline images were not available. A total number of 417 subjects were included. The list
of all images is attached in the supplementary material. T1-weighted sagittal volumes were
obtained using the magnetization-prepared rapid gradient-echo (MP-RAGE) pulse sequence
with imaging parameters TR=2300 ms, TI=900 ms, flip-angle=9°at 3 T (and TR=2400 ms,
TI=1000 ms, flip angle=8°at 1.5 T) minimum full TE, sagittal slices=160. All 1.5 T subject
acquisitions used 1.25×1.25 mm2 in-plane spatial resolution and 1.2-mm thick sagittal
slices. The 3 T subject acquisitions also used 1.2-mm thick sagittal slices, but were acquired
with 1.0×1.0 mm2 in-plane spatial resolution. Back-to-back scans were acquired from each
subject within each scanning session and an image analyst at Mayo clinic rated the image
quality of each scan. Quality criteria included blurring/ghosting, flow and susceptibility
artifacts. For the analysis based on accuracy we included the ADNI baseline scan
(Timepoint 1) with the best quality rating to avoid misclassifications due to low quality, e.g.
caused by motion artifacts. For the analysis of the impact when changing field strength, we
included further 192 back-to-back scans with a lower or equal quality compared to the other
image acquired at the same session. The ADNI structural brain imaging data can be
downloaded with or without certain processing steps applied (see
http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml). Availability of pre-processing
steps depends on manufacturer and coil system (Jack et al., 2008). We included images that
were corrected for system-specific image geometry distortion due to gradient non-linearity
(GradWarp) and, if available, additional image intensity non-uniformity (B1 correction).We
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excluded subjects with diagnosed MCI to reduce biological variability, as this diagnostic
group is arguably the most heterogeneous. The scanner configurations considered were (a)
manufacturer, namely Siemens Healthcare, GE Healthcare and Philips Medical Systems, (b)
magnetic field strength, namely 1.5 T and 3 T, and (c) coil system, namely single-channel
birdcage coils (BC) and multi-channel phased-array head coils (PA). We focused on these
parameters as they were explicitly taken into account during the establishment of the MRI
protocols for the ADNI study (Jack et al., 2008). Other configurations like scanner software
version, detailed coil configuration or coil type were not considered. Platform-specific lists
of sequence parameters are available at http://www.loni.ucla.edu/ADNI/Research/Cores/.

Each of the 417 individuals had a baseline scan at 1.5 T. Among these, 101 participants had
a second scan within 2 to 102 days (24±15 days) in a scanner with 3 T. For the rest of the
article, we will refer to the 316 images of higher quality of individuals that did not have a
scan at 3 T as SOLO_1.5 T and we will refer to the two sets of 101 images from individuals
that had an image at both magnetic field strengths as PAIR_1.5 T and PAIR_3.0 T
respectively. All resulting 26 subgroups are listed in Supplementary Table 1. There was a
trend towards age difference in two of these groups. The subgroup with lowest MMSE of
the AD-p group had 22.6±2.0 [18–26], and the highest MMSE score of AD-p group was
24.1±2.2 [20–28] (p=0.03). No significant differences in the MMSE between control groups
were observed.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu).The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative
is Michael W. Weiner, MD, VA Medical Center and University of California-San Francisco.
ADNI is the result of efforts of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to
90, to participate in the research—approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for 3 years and 200 people
with early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Methods
Brain segmentation and registration

Image pre-processing was carried out using SPM8 software
(http://www.fil.ion.ucl.ac.ek/spm). Images were automatically coregistered to a head
template of a single subject, which was aligned with the prior tissue probability maps.
Unified Segmentation algorithm (Ashburner and Friston, 2005) was used in combination
with a high-dimensional image warping approach (Ashburner, 2007), as suggested in
Klöppel et al. (2008) and validated in Cuingnet et al. (2011), to obtain spatially normalized
GM probability maps. In this process, a template representing the average GM anatomy of
the population was created and all images were warped into the space of this template with
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isotropic voxel size of 1.5 mm and spatial resolution of 121×145×121 voxels. Subsequent
modulation (Ashburner and Friston, 2000) was applied to ensure that the overall amount of
each tissue class remained constant after spatial normalization.

Classification
An SVM is a high-dimensional pattern classification method. Given a set of samples with
known group labels and a kernel function, the SVM computes a high dimensional
hyperplane that separates two groups. In this study, the spatially normalized and modulated
map of GM probability represents one sample with voxel values providing individual
features of the local anatomy. Unlike the toy example depicted in Supplementary Fig. 1, the
dimensionality of the problem of this work is not 2, but about 2·106. The number of training
samples is smaller or equal to 417. Therefore the dimensionality of the problem is much
larger than the number of samples. Furthermore, a large fraction of the dimensions carries
no relevant information, e.g. background or brain regions not related to the disease.
Dimensionality reduction strategies such as principle component analysis could be
employed to reduce dimensionality without loss (and potentially even with gain) of
classification performance. However, no further treatment was applied to the GM maps,
because the goal of this study was to use a well-tested and accepted method (Cuingnet et al.,
2011; Klöppel et al., 2008) with few parameters in order to minimize effects due to
classifier-specific parameters such as dimensionality reduction methods. We used an
implementation of a C-SVM (Boser et al., 1992; Cortes and Vapnik, 1995) by libsvm

(Chang and Lin, 2001) with a linear kernel function . Cost parameter
C was fixed at the default value of 1. In preliminary test, C>1 did not influence the accuracy.
A mathematical formulation of the SVM classification is presented in the supplementary
materials. To evaluate each model and estimate its ability to correctly classify unseen data,
we performed two validation methods: leave-one-sample-out cross-validation (LOO-CV)
and a validation with an independent test set. LOO-CV was adopted, as some of the pure
hardware groups were too small to split them into a training and a test set. On the other
hand, using LOO-CV was not possible when training was done with one hardware set, and
testing with another.

In the LOO-CV each sample of the training set with total n samples was tested with a model
built with all the other n–1 samples. This procedure is repeated until each scan has once
been left out. In addition to the LOO-CV, the validation of the performance using an
independent test set was performed. We refer to the evaluation of images unseen in training
as testing.

Performance of disease classifiers
We subdivided the images into sets according to the hardware used to acquire them (see
Supplementary Table 1). The hardware type refers to a specific combination of
manufacturer, coil system and field strength. All homogeneous data sets contained
acquisitions from different sites. We wanted to compare the performance of the classifiers
trained on subgroups of images acquired with a pure hardware configuration, which reduced
the training sample size. On the other hand, the largest possible number of subjects was
desirable to get a more stable performance estimate. Furthermore, reduction to subsamples
based on acquisition hardware led to different sample sizes for each hardware setting as well
as an unbalanced number of AD-p and CN samples. To tackle these partly contradicting
issues, we decided (a) to report the performance on equally sized groups of patients and
controls, (b) to repeat this analysis at different group sizes (20, 40, 60, 80 and 95 subjects)
whenever available, and (c) to require a minimum size of about 20 subjects per group, as
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previous work has shown a substantial decrease of performance with smaller groups
(Klöppel et al., 2009).

For each group size, training and testing subsets with equal numbers of AD-p and CN was
randomly selected. This was repeated 500 times to obtain mean, standard deviation and
empirical confidence intervals (CI) for each group size. To allow comparison with previous
studies (Cuingnet et al., 2011; Franke et al., 2010), we report performance of classifiers
trained with a large sets of images.

Fig. 1 shows a schematic flowchart of the method we used to compare the accuracy of each
pure setting to the expected accuracy of mixed settings of the same group size. This was
based on our hypothesis that a classifier should perform better with a pure hardware setting.
In the resulting analyses, the pure sets were randomly split into subsets with equal number
of controls and AD-probable subjects (either 20, 40 or 60 subjects per group). Then the
LOO-CV of the subset was computed. These steps were repeated 500 times to obtain the
accuracy distribution including mean (xpure) and standard deviation as above. The mean
accuracy for each pure set was then compared to a distribution of mean accuracies obtained
by computing the mean (μ) and standard deviation (σmixed) of 500 mean accuracies over 500
randomly selected mixed sets, each having the same number of CN and AD-p as the
hardware-pure set. The mean accuracy of the pure set was statistically compared to the
expected mean accuracy of the random sets using a z-test z=(xpure–μ)/σmixed.

Mutual testing across hardware sets
We mutually tested image sets by models trained on independent image sets. The list of
these sets and their demographic distribution is specified in Supplementary Table 1. The
aspect of field strength was investigated with 101 patients that were scanned at 1.5 T and 3
T. Additionally, we used a third, independent set of images (n=316). We computed the
LOO-CV for these three complete sets and mutually tested the sets of images. We also
computed 500 times the LOO-CV and mutual testing accuracy with randomly selected
reduced training sets (40CN/40AD-p) to obtain distributions of accuracies similar to the
previously described assessment of the performance with different sample sizes. Thereby,
we accounted for random effects that could alter the accuracy. The two image sets from the
same subjects were not mutually tested. Testing of images from subjects that were in the
training set would have led to an unrealistic high accuracy.

Variance of decision values
Differences in classification accuracy when the same subjects were scanned at 1.5 T and 3 T
may be a true effect of field strength but may also be random. For this part of the analysis,
we were interested in investigating how stable the diagnosis of a patient would be,
independently of its correctness. A trained linear SVM classifier defines a N-dimensional

decision boundary Ω that is defined by , where the vector w and the
scalar b are learned model parameters. Points on opposed sides have positive and negative
signs respectively and hence the class label of a sample x* is determined by the sign of the
decision value d=wTx*+b. To assure valid interpretation of decision values and their intra-
subject variability, only values computed with the same model, i.e. weight vector w and bias
b were compared, and the variance was compared with the distance between the means of
both classes.We quantified the error within two back-to-back scans, i.e. the minimal
variation of the decision value caused by the whole acquisition and post-acquisition
processing pipeline. In order to quantify the variation across hardware and isolate a
systematic effect of field strength, we computed the differences between decision values
within two images of the same patient acquired on two different systems, one at 1.5 T and
the other at 3 T respectively. We will refer to it as a change of field strength but would like
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to point out that the systematic change in field strength was irregularly accompanied by a
change in coil system and/or manufacturer.

The decision values were computed with two different training sets. The first was composed
of 316 images (SOLO_1.5 T), since it was the largest possible data set that did not include
samples from individuals that were in the testing set. This data set is supposed to give the
highest accuracy. The second training set was composed of 80 randomly selected scans (40
CN and 40 AD). The testing set for both training sets was composed of 384 images from 96
participants with both back-to-back baseline scans available from 1.5 T and 3 T. Using the
training set we estimated the effect of the disease on group level as well as the within-
subject variance between two repeated scans acquired back-to-back and between two
acquisitions of the same subject but acquired at different field strength. Furthermore we
were interested in the effect of sample size on the variability.

Results
General performance

For mixed sets of equal size, and 95 probable AD subjects and 95 healthy controls in each
set we empirically obtained 83.9±2.3% LOO-CV accuracy (percentile 2.5% was at 79.5%
and percentile 97.5% was at 88.4%). For the same subjects, but using only images acquired
at 1.5 T, we empirically obtained 84.4±2.2% LOO-CV accuracy (percentile 2.5% was at
80.0% and percentile 97.5% was at 88.4%). Performance on independent test sets was
similar (Table 1). When changing the size of the training set while keeping balanced
diagnostic groups the mean performance increased with training sample size and the
variance decreased as shown in Fig. 2. The two classifiers trained with the maximum
number of independent images from 417 subjects each, reach a LOO-CV accuracy of 87.5%
(1.5 T only) and 86.6% (1.5 T mixed with 3 T).

Performance of hardware pure sets
We subdivided the set of all images according to the main hardware components as listed on
Supplementary Table 1. The performance of randomly composed mixed sets was used as
reference for estimated quality at a given group size. Table 2 reports the LOO-CV accuracy
of the pure sets and the expected mean accuracy of randomly composed classifiers with the
same number of CN and AD-p subjects. None of the mean accuracies of the pure sets was
significantly better than the expected accuracy of mixed sets. Further LOO-CV accuracies of
pure sets can be found in Supplementary Figs. 1–3. The analysis of the effect of field
strength on the performance is presented in Table 3. LOO-CV accuracy with 40 CN and 40
AD-p of PAIR_1.5 T was 77.5 ±2.4 [72.5 77.5 82.5] and the LOO-CV of PAIR_3.0 T was
76.9±2.4 [72.5 76.25 81.25].

Mutual testing across hardware sets
For pure subgroups, a training and mutual testing was performed in three steps. (a) For each
group, we trained a classifier. (b) We computed its LOO-CV accuracy as estimate of the
detection accuracy. (c) Each classifier was tested on all image sets that did not overlap with
the training set. Resulting lookup tables can be found in Supplementary Figs. 2 and 3. In
these tables all images from each set were taken, whereas in Supplementary Fig. 1, subsets
had equal size with equal number of AD-p and CN to allow a direct comparison.
Qualitatively, one can observe that in general larger subsets perform better. However, large
differences in performances can be seen in subsets of same size. Combining samples from
BC and PA from the same manufacturer generally improve LOO-CV and testing accuracy
(Supplementary Fig. 2). See other supplementary material for more details.
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When exploring the effect of field strength, LOO-CV accuracy of 1.5 T scans in the sets
PAIR_1.5 T and PAIR_3.0 T reached 80.2% and predicted the remaining 316 images
equally well with accuracy of 82.0% and 82.3% respectively. The independent SOLO_1.5 T
set detected the PAIR_1.5 T set with 88.1% and the PAIR_3.0 T image set with 83.2%
accuracy. As shown inTable 3, subsets with 40 subjects per group from SOLO_1.5 T
detected PAIR_1.5 T on average with 81.9±3.0% accuracy and PAIR_3.0 T with 80.4±2.7%
accuracy. SOLO_1.5 T was predicted with 82.1±1.4% by PAIR_1.5 T and with 81.7±1.5%
by PAIR_3.0 T.

Variance of decision values
In Fig. 3, the variation within back-to-back scans and across two field strengths are plotted
and compared to the distributions of the decision values of each diagnostic group (Fig. 4).
We observed that the variance between two back-to-back scans did neither depend on the
diagnostic group, nor the field strength. Using the large sample (n=316), the mean decision
value of participants with probable AD was 0.41 and the mean of the control group was
−0.61. This indicates that on average the decision value of subjects with AD-p was 1.02
smaller than the decision value of control subjects. The standard deviation of repeated scans
was 0.08 (within subjects) and the standard deviation of changing field strength was 0.20
(within subjects). The values obtained with a classifier with less training samples (n=80)
were consistently smaller. The between-group difference was equal to 0.66, the standard
deviation of the error of repeated measure was 0.06 (within subjects) and the standard
deviation of changing field strength was 0.15 (within subjects). The class-wise decision
value distributions shown in Fig. 4 were normally distributed (p>0.1) as verified with the
Kolmogorov–Smirnov test. Within participants, the change of the system from 1.5 T to 3 T
(Figs. 3(A+B) right panel and Figs. 4(A+B) right panel) did not introduce a systematic shift
of the decision value(one-sample t-test p>0.05). The introduced variance between repeated
scans was 13.5 and 11 times smaller than the between-group difference, for the two training
sizes respectively. The variation due to change in field strength was 2.5 times higher than
the variation within two back-to-back scans. This error introduced by changing hardware is
sufficiently large to change the decision.

The difference of the SVM-decision value between diagnostic groups was smaller when the
number of training samples was decreased (n=80) but was less variable within each group.
Back-to-back differences within subjects were also smaller (Fig. 3(B)).

Discussion
We processed 710 images acquired at 56 different sites, cross-validated and tested classifiers
for their detection accuracy to evaluate a possible effect of the manufacturer, magnetic field
strength or coil configuration. Apart from a trend in two sets, the subjects in all sets had
equal age distributions. The largest two classifiers were trained on 417 images and their
cross-validation accuracies reached on average 87% which corresponds to previously
reported performances (Cuingnet et al., 2011). The mean LOO-CV accuracy consistently
increased, as expected, with higher numbers of training samples. When applying the
classification algorithm to new data sets, the accuracy of the proposed method was
reasonably high and performed comparable to several other approaches both on ADNI data
as well as single site data (Cuingnet et al., 2011; Plant et al., 2010). Unlike most studies,
which either have single site data or pool the entire ADNI data as training samples to
validate the algorithm, our goal was to test the hardware effects on classification accuracy
and required us to separate the data into smaller subgroups.

We assumed that pure hardware sets would show a better LOO-CV accuracy. Performance
of individual pure sets of images varied strongly, as shown in Supplementary Figs. 1–3.
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Such single performance values are an uncertain estimator, and results from the permutation
tests (Table 2) indicate that classifiers using images acquired with mixed hardware
performed equally well. Since each pure set of images consisted of different subjects, the
effect of individual anatomy on the accuracy was a covariate to the hardware effect. It is
important to note that the sample sizes in each of the subgroups were different but was
greater than 20, which was found to be the minimum for the proposed classification problem
(Klöppel et al., 2009). Even though large sample sizes may mean more stable classifiers and
better performance, the performance of each of the different hardware settings (Table 2) was
found to be statistically similar.

In the comparison of PAIR_1.5 T and PAIR_3.0 T, the effect of individual anatomy was
reduced to changes of aging and eventually progressive atrophy caused by disease over a
period of 2 to 102 days. Because all images at 3 T were acquired after the 1.5 T scans, we
expected the set of images taken at a later time point to be more or equally discriminative
due to the progression of the disease in some individuals. Experimentally the opposite was
observed. Classifiers trained on images acquired at 1.5 T predicted the image sets acquired
at the same field strength slightly (1.6 percentage points) but significantly better. The test
result of the SOLO_1.5 T set performed 6 percentage points better on the 1.5 T than on the 3
T test data (Table 3). Given that the test sets were composed of the same subjects, these
differences are remarkable. However, it was probably due to chance, since the variation of
the decision value was centered on zero for both diagnostic groups (Fig. 4). The higher SNR
of 3 T systems compared to 1.5 T was by design used in the ADNI study to increase spatial
resolution (Jack et al., 2008). Higher resolution of the images did in this case not improve
performance potentially because the processing pipeline included the resampling of GM
maps to 1.5 mm isotropic voxel size during spatial normalization. Reproducibility of the
decision value was similarly high, for both sample sizes tested. The standard deviation of the
introduced error was more than 10 times higher than the difference between the means of the
diagnostic groups. Changing field strength of the scanner led to variance that was 3 times
higher than the back-to-back variance. Despite a change in field strength, no systematic
effect on the decision value could be observed. The small training set was not more
vulnerable to changes in hardware; on the other hand, the larger training set did not decrease
these kinds of errors. The difference in the decision value between groups increased with the
size of the training set. The large data set pronounced differences related to the disease but
also differences that are related to the acquisition process. When the number of training
samples was small, adding samples from heterogeneous hardware to the training set
increased the accuracy of the classifier, assumingly because benefits from a larger sample
size exceed those of hardware inhomogeneity.

From these results we conclude that reproducibility of the post-acquisition pipeline is
similarly high at both field strengths. The source of variation – indistinguishable with the
performed analysis – are (a) scanner noise, (b) varying image quality, (c) variations in any
step of the pre-processing pipeline such as segmentation, resampling or spatial
normalization. Furthermore a change in hardware setting introduces variation that can shift
the decision value substantially. Two possible explanations come to mind: (a) Random
effects due to physiological conditions of the patient, the positioning of the head, motion, or
(b) Systematic effects that are related to a specific change in system. It should, however, be
kept in mind that the results of the current study cannot readily be extended to multi-center
with a less stringent system of quality control. In addition, the attempts to increase the
comparability between 1.5 T and 3 T data are specific to the ADNI study and allowed a
successful classification across field strengths.

The results of this study have substantial implication for the clinical setting. Changing field
strength introduces additional variance in the computed decision value and thus decreases
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accuracy, compared to repeated measures on the same scanner. It should be noted that two
scanners with the identical hardware setting will not produce exactly identical results and
this may also influence classification accuracy. From the practical point of view, the choice
of hardware would normally influence the decision in about 5% of the cases. The obtained
accuracy of about 84% presents encouraging results for automated SVM-based disease
classifier with the use of images acquired at different centers in comparison to conventional
clinical ante-mortem AD diagnosis, which is not 100% reliable. Specifically, approximately
30% of cognitively normal subjects will meet pathological criteria for AD at post-mortem
(Morris and Price, 2001). Especially when the number of available samples from one center
was small, the combination of training images from two sets often resulted in a clear
improvement of performance. The results did not indicate that mixing data from different
centers would lead to substential loss of classification accuracy.

Since the 95% CIs of the performance were varying as function of training sample size, and
were large for small sample sizes (e.g. 62.5–90% with 20 subjects per diagnostic group), a
quantification of the performance by a single estimation of the accuracy is doubtful.
Reporting CI confidence intervals as in Fig. 2 strengthens the interpretability of the
estimation of the classification performance and provides a measure of diagnostic
confidence for clinical applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Flow-chart representation of the comparison of an example computation to the mean
accuracy distribution of random sets. Comparison of PURE set accuracy with expected
accuracy of mixed sets using z-test.
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Fig. 2.
Box-plots of leave-one-out cross-validation (LOO-CV) accuracy as function of group size
(x-axis) obtained by 500 random permutations.
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Fig. 3.
Changes of the SVM decision value (y-axis) between back-to-back scans (BTB), separately
for diagnostic group (first panel) and field strength (second panel), and with changes
between two field strengths (thus also two systems), separately for diagnostic group (third
panel) for acquisitions of 96 subjects. Change in field strength (FS) does not introduce
systematic bias (one-sample t-test p>0.05). A: Training set composed of 316 images. B:
Training set composed of 80 images.
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Fig. 4.
Variance of decision values when comparing back-to-back scans or change of field strength
compared to the effect of group. A: Training set size=316. B: Training set size=80. CN:
healthy controls, AD: subject with probable AD, BTB: back-to-back (within subjects), FS:
field strength (within subjects).
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Table 1

Performance of classifiers on independent test sets as function of group size. Group sizes of training and
testing set were always equal. Each row presents the summary of 500 runs in which a random subset was
selected.

Group
size

Acquisitions from 1.5 T only (mean
accuracy±standard deviation)
[q2.5% q25% q50% q75% q97.5%]

Acquisitions from 1.5 T and 3 T
(mean accuracy±standard
deviation) [q2.5% q25% q50% q75%
q97.5%]

10 (72.3±11.0)%
[50.0 65.0 72.5 80.0 90.0]%

(71.6±10.8)%
[50.0 65.0 70.0 80.0 90.0]%

20 (76.2±6.9)%
[62.5 72.5 77.5 80.0 87.5]%

(76.5±7.3)%
[62.5 72.5 77.5 80.0 90.0]%

40 (80.7±4.7)%
[70.0 77.5 81.2 83.8 88.8]%

(80.2±4.6)%
[70.0 77.5 80.0 83.8 88.8]%

60 (82.9±3.5)%
[75.8 80.8 83.3 85.0 88.3]%

(82.3±3.6)%
[75.0 80.8 82.5 85.0 89.2]%

80 (83.9±2.7)%
[78.1 81.9 83.8 85.6 88.8]%

(83.5±2.8)%
[77.5 81.9 83.8 85.6 88.1]%

95 (84.5±2.5)%
[78.9 82.6 84.7 86.3 88.9]%

(84.2±2.4)%
[79.5 82.6 84.2 86.3 88.4]%
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Table 3

Mutual training and testing of two image sets acquired at 1.5 T and one image set acquired at 3 T. PAIR_1.5 T
and PAIR_3.0 T are images from same subject. Image set SOLO_1.5 T is independent from the other two.
Bold values in the diagonal are leave-one-out cross-validation accuracies (% correct). Off-diagonal values
represent testing accuracies (% correct) of image sets in the same column with the training set listed in the
same line. In panel A, training was performed with the full data set (316 scans), whereas in panel B, subsets
with each having 40 randomly selected subjects per diagnostic group were used for each cross-validation and
testing run. In B, the mean and standard deviation from 500 runs is reported.

n SOLO_1.5 T PAIR_1.5 T PAIR_3.0 T

A

SOLO_1.5 T 316 85.1 88.1 83.2

PAIR_1.5 T 101 82.0 80.2 -

PAIR_3.0 T 101 82.3 - 80.2

B

SOLO_1.5 T 316 79.5±4.0 81.9±3.0 80.4±2.7

PAIR_1.5 T 101 82.1±1.4 77.5±2.4 -

PAIR_3.0 T 101 81.7±1.5 - 76.9±2.4
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